
Incremental Kernel SVD for Face Recognition with Image Sets∗

Tat-Jun Chin† Konrad Schindler David Suter
Institute for Vision Systems Engineering,
Monash University, Victoria, Australia.

Abstract

Non-linear subspaces derived using kernel methods have
been found to be superior compared to linear subspaces in
modeling or classification tasks of several visual phenom-
ena. Such kernel methods include Kernel PCA, Kernel DA,
Kernel SVD and Kernel QR. Since incremental computation
algorithms for these methods do not exist yet, the practical-
ity of these methods on large datasets or online video pro-
cessing is minimal. We propose an approximate incremen-
tal Kernel SVD algorithm for computer vision applications
that require estimation of non-linear subspaces, specifically
face recognition by matching image sets obtained through
long-term observations or video recordings. We extend a
well-known linear subspace updating algorithm to the non-
linear case by utilizing the kernel trick, and apply a reduced
set construction method to produce sparse expressions for
the derived subspace basis so as to maintain constant pro-
cessing speed and memory usage. Experimental results
demonstrate the effectiveness of the proposed method.

1. Introduction

Linear subspace methods have been found to be effec-

tive for modeling and classification of visual phenomena

that are largely linear in nature. Some phenomena, how-

ever, are extremely non-linear, and kernel methods, such

as Kernel SVD (KSVD), Kernel PCA (KPCA), Kernel QR

(KQR) or Kernel Discriminant Analysis (KDA), that pro-

duce non-linear subspaces via the kernel trick are found to

be superior compared to their linear counterparts. Examples

in face recognition include [10, 12, 8].

Here, we focus on the face recognition paradigm that in-

volves matching sets of face images [1, 10, 11]. The faces

are usually captured under varying poses and illumination

∗The project was part supported by the Australian Research Council

Centre for Perceptive and Intelligent Machines in Complex Environments.
†Tat-Jun Chin is a recipient of the Endeavour Australia-Asia Award

2004 conferred by the Department of Education, Science and Training of

the Australian Government.

conditions. We concentrate on the case where the image set

is very large due to long time observations or video record-

ings, thus there is a need for incremental updating of the

face representation or classifier. We note that linear sub-

space methods have produced good results [11, 5] at high

speeds due to the availability of incremental SVD compu-

tation algorithms [3], but have somewhat reached a perfor-

mance barrier due to the linear assumption of the model (re-

fer to [1]), while non-linear subspaces derived using kernel

methods (e.g. KPCA [8], KQR [10]) can potentially deliver

higher accuracy, but are impractical for large-scale data or

online video processing due to the absence of incremental

computation procedures.

In this paper, we propose an approximate incremental

KSVD computation algorithm for non-linear subspace up-

dating. A well-known incremental SVD computation pro-

cedure [3] is extended to the non-linear (kernel) case. We

show how computations of the required elements of the

algorithm can be obtained via the kernel trick so that ex-

plicit mappings of the input data to the kernel induced fea-

ture space can be avoided. Reduced set construction tech-

niques [9] are applied at every iteration to produce sparse

representations of the non-linear subspaces so that constant

processing speed and memory usage can be achieved. The

proposed algorithm is then applied on a face video database

to demonstrate its effectiveness for face recognition.

2. Previous Work

The Mutual Subspace Method (MSM) was proposed

in [11] for face recognition with temporal image sequences

as inputs. A linear subspace is estimated from a sequence to

represent a face and distances between subspaces are used

to distinguish faces. The Kernel Mutual Subspace (KMS)

method [8] was proposed to extend the MSM to accom-

modate non-linear data by using KPCA. The KMS method

outperforms the MSM even though subspaces of lower di-

mension were used to represent face image sequences, in-

dicating that non-linear subspaces derived using KPCA are

more capable in capturing the complex manifold of face im-

ages under pose and illumination variations. However, the

Proceedings of the 7th International Conference on Automatic Face and Gesture Recognition (FGR’06)
0-7695-2503-2/06 $20.00 © 2006 IEEE

KMS method is infeasible for large image sets or online

video processing due to KPCA being computable in a batch

manner (using all available images) only.

The concept of kernel principal angles was introduced

in [10] for pattern classification tasks that involve match-

ing vector sets. Essentially the algorithm performs a QR

decomposition of vector sets mapped to the kernel induced

feature space to obtain linear subspaces (c.f. non-linear in

original data space) and finds the principal angles between

the subspaces. A good result for face recognition over a

small database was reported. Nonetheless, it is unclear how

the method can be extended to handle large vector sets or

online processing.

An iterative algorithm for performing KPCA, called the

Kernel Hebbian Algorithm (KHA), was proposed in [6].

The KHA is based on the Generalized Hebbian Algorithm

(GHA) which was introduced as an online algorithm for

PCA. The KHA showed comparable results to KPCA and

enabled the processing of large databases by iteratively sub-

jecting each image to the GHA neural network over multi-

ple passes. Here, we seek an iterative and incremental com-

putation algorithm for KSVD so that it is unnecessary to

consider all available images more than once.

3. The SVD and Face Recognition

We start by creating a data matrix a = [x1 · · · xn]∈R
m×n

from our image set, with xi ∈ R
m being the i-th input im-

age. Without loss of generality, we will assume that m > n.

Given the SVD of a, i.e. a = UΣV T , we compute the rank-r
singular value factorization of a, given by

ar = UrΣr (V r)T , (1)

with r < n, Ur = U (: ,1 : r), V r = V (:,1 : r) and Σr =
Σ(1 : r ,1 : r) = diag(σ1, . . . ,σr) with σ1 ≥ ·· · ≥ σr > 0 by

using a Matlab notation.

In face recognition, we use span(Ur) to represent the

face which generated image set a. Ur is an orthonormal

basis for an r-dimensional subspace that minimizes

‖a−ar ‖F , (2)

where ar = Ur (Ur)T a is the rank-r approximation of a and

‖·‖F indicates the Frobenius norm. Distances between sub-

spaces are then used to classify face image sets [11, 5, 10].

If the vectors in a are centered prior to performing the

SVD, the resulting subspace basis Ur are the principal com-

ponents of a. Strictly speaking, the SVD is a tool for per-

forming PCA, but some applications might require a raw

SVD instead of a PCA. This subtle difference produces

vastly different subspaces, and it should be noted that for

our purpose here the class-specific subspaces are derived

without data centering.

3.1. The Kernel SVD

Non-linear subspaces might be more suitable to describe

facial image sets which are known to lie on highly com-

plex manifolds. To this end, we non-linearly map the in-

put data to a higher dimensional space using the function

φ : R
m −→ F and perform the SVD in F. The map φ is

induced by a kernel function k (· , ·) that evaluates the in-

ner product between mapped input data in feature space.

If k (· , ·) is an appropriately chosen Mercer kernel, then F

has the structure of a so-called Reproducing Kernel Hilbert
Space (RKHS). See [9, 4] for more details.

Using φ , we transform a into A = [φ(x1) · · · φ(xn)].
Consider M = AT A and its eigenvalue decomposition M =
QΔQT . Matrix M contains inner products between the

columns of A and can be computed via the kernel function

without having to evaluate φ(xi). The rank-r singular value

factorization of A is then

Ar =
[
AQr (Δr)−

1
2

][
(Δr)

1
2

][
(Qr)T

]
≡UrΣr (V r)T , (3)

with Qr = Q(: ,1 : r) and Δr = Δ(1 : r,1 : r). This is the ker-
nel singular value decomposition (KSVD) [4]. M is positive

semi-definite if it is constructed using a Mercer kernel.

Observe that the basis Ur is stored implicitly as

linear combinations of mapped input vectors: Ur =
AQr (Δr)−

1
2 := Aα . Given another basis Xr = Bμ obtained

via KSVD from mapped input data B, we can compute

D = (Ur)T Xr = αT AT Bμ (4)

using the kernel function for AT B. By invoking the SVD

on D, we obtain Y T DZ = θ , where diag(θ) = {θ1 , · · · , θr}
are the principal angles between span(Ur) and span(Xr).
Functions on θ can be used to construct distance measures

between subspaces (see [10] for more details).

4. Approximate Incremental Kernel SVD

Incremental computation of the SVD is motivated by the

infeasibility of performing the SVD on large matrices or

when matrices are growing in real-time. A similar need

holds for KSVD. Here, we propose an approximate incre-

mental KSVD updating procedure by extending the method

for the linear case detailed in [3].

4.1. Incremental SVD Computation

Assume we have made a rank-r approximation of A and

obtained the corresponding elements Ur, Σr and V r. For

incremental computations, we want to discard A once a sin-

gular value factorization is achieved so we should not rely

on A to update Ur, Σr and V r when new data arrives. Given

Proceedings of the 7th International Conference on Automatic Face and Gesture Recognition (FGR’06)
0-7695-2503-2/06 $20.00 © 2006 IEEE

new columns C ∈ R
m×c, we would like to find the SVD of

[Ar C]. We can decompose [Ar C] as such:

[
Ar C

]
=

[
Ur J

][
Σr L

0c×r K

][
V r 0n×c

0c×r Ic

]T

,

(5)

with 0a×b denoting a zero matrix of size a×b and Ia signi-

fying an identity matrix of size a×a. The other components

that make up (5) are defined as L = (Ur)TC, H = C−UrL
and JK QR←− H. For geometrical interpretations of these

components, refer to [3].

Let E, F and GT be respectively defined as the left, mid-

dle and right matrix of the right-hand-side of (5). We can

diagonalize F by invoking the SVD, i.e. F = U ′Σ′ (V ′)T
,

and substitute it into (5), yielding the updated SVD:

[
Ar C

]
= U ′′Σ′(V ′′)T , (6)

with U ′′ = EU ′ and V ′′ = GV ′. Ur, Σr and V r are then

revised as Ur ←− U ′′ (: ,1 : r), Σr ←− Σ′ (1 : r ,1 : r) and

V r ←− V ′′ (: ,1 : r). For potential numerical issues of the

procedure and their solutions, refer to [3]. Note that the

update on Ur is dependent only on C and Σr. V r can be

discarded for applications that do not make use of it.

4.2. Incremental Kernel SVD Computation

Here, we extend the incremental SVD procedure to

the non-linear (kernel) case. The key to update the r-

dimensional basis Ur is to store Σr and compute J, K and L
for new data C. The equivalent procedure in feature space

can be performed by making use of the kernel function.

Let Ur be the r-dimensional basis for a linear subspace

in feature space obtained from n mapped input images

A = [φ(x1) · · · φ(xn)]. Ur is computed using the KSVD

and thus each basis vector is defined in terms of a linear

combination of mapped input vectors, i.e. Ur = Aα with

the elements of α ∈ R
n×r as the coefficients of linear ex-

pansions. Trivially, we can compute matrix L as

L = αT AT C , (7)

where AT C can be evaluated via the kernel function since it

contains inner products between columns of A and C.

Defining H is slightly more complicated as it is a func-

tion of A as well as C. Nonetheless, we can still express it

as linear combinations of mapped input space vectors:

H =
[

A C
][−α L

Ic

]
:= A′ β ′ , (8)

with A′ = [A C] by definition, and β ′ contains the coeffi-

cients of linear combination.

From the previous section, the QR decomposition was

applied to obtain an orthonormal basis J for H. Although

iterative kernel QR algorithms exist [10], we can derive

an equivalent orthonormal basis by performing a KSVD

(which is non-iterative) on H and retain all left singular vec-

tors to form J. We can compute the kernel matrix for H as

MH = (β ′)T (A′)T A′β ′ = (β ′)T M′β ′ (9)

and perform the procedure detailed in Section 3.1. M′ can

be evaluated using the kernel function on input images from

A and C. Hence, M′ will be positive semi-definite and this

will ensure the positive semi-definiteness of MH as well.

Let the eigenvalue decomposition of MH = QHΔHQT
H .

From (3), the matrix J and K would then be

J = A′ β ′ QH Δ− 1
2

H := A′ Ω , K = Δ
1
2
H QT

H . (10)

Matrix F is then constructed as shown in (5) and diagonal-

ized to result in F = U ′Σ′(V ′)T . The left singular vectors of

the matrix [Ar C] are

U ′′ =
[

Aα A′ Ω
]

U ′ , (11)

=
[

A C
]

Ψ , (12)

with Ψ =
[

α
0c×r

]
U ′(1 : r , :)+ ΩU ′((r + 1) : (r + c) , :).

The basis of the r-subspace that approximates the current

image set is then updated as Ur ←− [A C] Ψ(:, 1 : r).

4.3. Using Reduced Set Construction Methods

Up to this stage our incremental KSVD computation is

still exact, but observe that in this procedure it is unavoid-

able that the updated basis Ur is defined in terms of linear

combinations of old and new mapped image vectors. Thus,

although we are spared from computing a batch KSVD at

every iteration, we still have to store all seen images. This

is detrimental towards speed and memory usage.

To solve this problem, we seek a sparser expression for

Ur after every update. Close approximations for the basis

vectors can be achieved by constructing a reduced set ex-
pansion for each vector. Specifically, we apply the Iterated
Pre-Images approach detailed in [9]: Suppose we have an

updated basis Ur. A basis vector will be expanded as

u =
n+c

∑
i=1

ψ i φ(xi) . (13)

We seek a pre-image y so that u = φ(y). Most likely an

exact pre-image will not exist (see [9]), and we will have to

approximate u with a series of approximate pre-images:

u ≈
b

∑
i=1

η i φ(yi) , (14)

Proceedings of the 7th International Conference on Automatic Face and Gesture Recognition (FGR’06)
0-7695-2503-2/06 $20.00 © 2006 IEEE

where b < n + c. The intricacies on how to construct this

reduced set (RS) expansion are beyond the scope of this

paper. Refer to [9] for a detailed treatment.

Experimental results have shown that such a RS expan-

sion is able to achieve much sparser representations for

SVMs while causing no obvious deterioration in perfor-

mance [9]. The same observation was made for KPCA

in [7]. For the pseudo code of the proposed incremental

KSVD with RS expansions, see Algorithm 1.

Algorithm 1 The proposed incremental KSVD with RS

constructions for non-linear subspace updating.

Initialize parameters R, Nini, Ninc and Znum.

Obtain Nini data and perform batch KSVD.

Retain R dimensional basis.

Store data and linear expansion coefficients.

while Image set is not exhausted do
Obtain Ninc data.

Update SVD (refer to Section 4.2).

Update R dimensional basis.

Update linear expansion coefficients.

Append new data to storage.

if (Number of stored data) > (R×Znum) then
Create Znum pre-images to span each basis vector.

Overwrite stored data with all pre-images.

Update linear expansion coefficients.

end if
end while

4.4. Parameter Selection and Drifting

Due to the incremental nature of the algorithm, differ-

ences between the iteratively learned subspace from the

ground truth subspace is unavoidable. However, it is of in-

terest to keep drifting as minimal as possible. Several input

parameters of the algorithm influence the severity of drift-

ing. At this stage, the parameters discussed below are se-

lected experimentally to achieve best results (see Section 5).

In incremental SVD (and KSVD) computations, since a

fair sample of the underlying data distribution is unavail-

able initially, prior knowledge about the subspace on which

most of the data lie is reflected through the selection of the

subspace dimensionality R. Setting R too low might result

in crucial information about the data distribution being pro-

jected away during each iteration and causing severe drift-

ing of the learned subspace, whereas if R is too large, ex-

cessive computations at each iteration will slow down the

system.

In addition, the number of pre-images per basis vector

Znum for an RS expansion affects drifting as well. Clearly

the value R×Znum must be much less than the total num-

ber of data (if known in advance) to realize the benefit of

constructing RS expansions. Most of the time however, the

larger Znum is, the RS expansion will more accurately ap-

proximate a feature space vector (see [9] for more details).

Hence, setting a Znum too low might result in loose approx-

imations of the basis vectors and severe subspace drifting.

On the other hand, a high Znum will increase the computa-

tional load per update and cripple the system speed.

5. Experimental Results

We define acronyms for batch KSVD, the proposed in-

cremental KSVD (without RS constructions) and incremen-

tal KSVD with RS constructions respectively as B-KSVD,

I-KSVD and I-KSVD-RS. Firstly, a 2D toy problem of 300

data points was created. Refer to Figure 1: x-values have

uniform distribution in [−1, 1], whereas y-values are com-

puted from x2 +ε , where ε is normal noise with standard de-

viation 0.2. Evaluated visually, the I-KSVD basis is almost

identical to the B-KSVD basis. The I-KSVD-RS basis ex-

pectedly differs somewhat from the ground truth. Nonethe-

less, from the largely similar contour patterns, it can be

seen that the I-KSVD-RS derived subspace manages to pre-

serve the overall structure of the ground truth subspace ob-

tained from B-KSVD. For all cases, the Gaussian kernel

with σ = 10 was used.

Figure 1. A 2D toy problem. Contour lines
show projection values onto basis vectors.

To evaluate drift severity, memory requirements and

speed of I-KSVD-RS, the algorithm was run offline on an

image sequence of 3600 face images captured at 12 fps over

5 minutes. The recording was done as candidly as possi-

ble, and the subject was encouraged to perform arbitrary

Proceedings of the 7th International Conference on Automatic Face and Gesture Recognition (FGR’06)
0-7695-2503-2/06 $20.00 © 2006 IEEE

Figure 2. Example frames of the face video
sequence used as input to I-KSVD-RS.

movements like fidgeting, swiveling on the chair, transla-

tion, head rotation and talking. A face detector implemen-

tation of [2] was executed simultaneously at frame rate to

crop the face region. Preprocessing described in Figure 3

was done on the face sub-image before raster-scanning it

to form a column vector. Finally, the column vectors were

concatenated to form an image set. See Figure 2 for exam-

ple frames (minus Step 5 of preprocessing) of the sequence.

Observe the variations in pose, expression, scaling and face

localization.

The parameters for the I-KSVD-RS algorithm are Nini =
20, Ninc = 20, R = 5 and Znum = 20. As the update

progresses, distances to other subspaces were computed.

The subspace distance measure used was min(θ1 , · · · , θ5),
where {θ1 , · · · , θ5} are the principal angles between two

subspaces. From Figure 4(a), some amount of drifting

from the B-KSVD subspace evidently occurs but does not

seem to grow exponentially. In fact, the I-KSVD-RS and

B-KSVD subspaces seem to be converging as more sam-

ples are seen. Furthermore, the incrementally learned sub-

space does not “move” towards test subspaces estimated

from other faces, indicating that the discrepancy between B-

KSVD and I-KSVD-RS subspaces are acceptable for face

recognition. From Figure 4(b), I-KSVD-RS manages to

update in largely constant durations, whereas for I-KSVD

time per update grows exponentially. As expected without

RS expansions memory requirements increase linearly for

I-KSVD as the sequence progresses whereas I-KSVD-RS

maintains constant memory usage. See Figure 4(c). All

algorithms were implemented in Matlab on a Pentium 4

2.8Ghz machine with 512MB of memory.

To evaluate the effectiveness of I-KSVD-RS for face ver-

ification in comparison to B-KSVD, a face video database

of 9 individuals with 3 recording sessions each was cre-

ated. By designating 1 session for each individual for train-

ing and the other 2 as test sets, we have 18 true claimant

accesses and 216 impostor attacks. The recordings were

done in the manner described previously. Each session

is about 15s resulting in 180 vector image sets which are

Figure 3. Face image preprocessing. Step
1: Face detector output. Step 2: Color to
greyscale conversion. Step 3: Resize to
32×32 pixels. Step 4: Discard first and last 4
columns. Step 5: Adjust overall intensity to
zero mean and one unit standard deviation.

Figure 5. Samples from the face database.

preprocessed as Figure 3 describes. Figure 5 shows sam-

ples from the database. The I-KSVD-RS parameters are

Nini = 20, Ninc = 20, R = 5 and Znum = 20, while for

B-KSVD, 5-dimensional subspaces were used. For the ker-

nel methods, the Gaussian kernel with σ = 170 was used.

The MSM method (the linear version) was implemented

for comparison. The distance measure used is the same

as above. The MSM returned an Equal Error Rate (EER)

of 8.18%, while B-KSVD and I-KSVD-RS produced EERs

of 7.25% and 7.41%. Refer to Figure 6 for ROC curves.

Whilst all 3 methods gave comparable results, the MSM

used 25-subspaces compared to 5-subspaces of B-KSVD

and I-KSVD-RS. More crucially, by using I-KSVD-RS no

obvious deterioration in classification performance com-

pared to B-KSVD was observed.

6. Conclusion and Future Work

We proposed an approximate incremental KSVD algo-

rithm for applications in image modeling or pattern classi-

fication. The algorithm is an extension of an SVD updating

procedure to the non-linear (kernel) case for incremental es-

timation of non-linear subspaces. Reduced set construction

methods are used to compress representations of the non-

linear subspaces so that constant speed and memory usage

can be achieved during updating. Experiments were done to

Proceedings of the 7th International Conference on Automatic Face and Gesture Recognition (FGR’06)
0-7695-2503-2/06 $20.00 © 2006 IEEE

Figure 4. Drift, computation time and memory usage during updates. (a) Distance of the I-KSVD-RS
derived subspace from other subspaces. (b) Computation time per update of I-KSVD and I-KSVD-RS.
(c) Storage size (number of image vectors) required after each update of I-KSVD and I-KSVD-RS.

Figure 6. ROC curves for face recognition us-
ing 3 different algorithms.

evaluate the performance of the algorithm. In particular, it

displayed no obvious deterioration in classification perfor-

mance for face recognition with image sets. The algorithm

is generic and should be beneficial for applications that in-

volve non-linear subspace estimation from large data sets.

Although currently running at an average speed of about

4 frames per second, through proper implementation, sub-

stantial speed-up of the algorithm is achievable. This should

enable online processing of video sequences and subse-

quently face recognition from video. Secondly, to realize

the advantage of kernel methods for face recognition, ef-

forts should be expended to select or construct kernel func-

tions that can considerably boost the performance of face

recognition systems based on kernel methods.

References

[1] O. Arandjelovic, G. Shakhnarovich, J. Fisher, R. Cipolla,

and T. Darrell. Face recognition with image sets using man-

ifold density divergence. In IEEE CVPR, 2005.

[2] G. Bradski, A. Kaehler, and V. Pisarevsky. Learning-based

computer vision with Intel’s open source computer vision

library. Intel Technology Journal, 9(2):119–130, 2005.
[3] M. Brand. Incremental singular value decomposition of un-

certain data with missing value. In ECCV, 2002.
[4] N. Cristianini and J. Shawe-Taylor. Kernel methods for pat-

tern analysis. Cambridge University Press, 2004.
[5] K. Fukui and O. Yamaguchi. Face recognition using multi-

viewpoint patterns for robot vision. In 10th International
Symposium of Robotics Research, 2003.

[6] K. I. Kim, M. O. Franz, and B. Schölkopf. Iterative ker-

nel principal component analysis for image modeling. IEEE
PAMI, 27(9):1351–1366, 2005.

[7] J. Meltzer, M.-H. Yang, R. Gupta, and S. Soatto. Multiple

view feature descriptors from image sequences via kernel

principal component analysis. In ECCV, 2004.
[8] H. Sakano, N. Mukawa, and T. Nakamura. Kernel mutual

subspace method and its application for object recognition.

Electronics and Communications in Japan, 2/88, 2005.
[9] B. Schölkopf and A. Smola. Learning with kernels. The

MIT press, 2002.
[10] L. Wolf and A. Shashua. Learning over sets using kernel

principal angles. JMLR, 4:913–931, 2003.
[11] O. Yamaguchi, K. Fukui, and K. Maeda. Face recognition

using temporal image sequence. In IEEE AFGR, pages 318–

323, 1998.
[12] M.-H. Yang, N. Ahuja, and D. Kriegman. Face recognition

using kernel eigenfaces. In IEEE ICIP, 2000.

Proceedings of the 7th International Conference on Automatic Face and Gesture Recognition (FGR’06)
0-7695-2503-2/06 $20.00 © 2006 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

